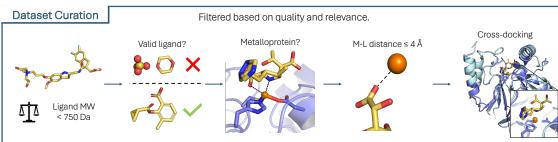
Hybrid ML and Physics-Based Docking for Metalloproteins

Woitek Trevde^{a,b}, Franz Görlich^{a,c}, and Fernanda Duarte^a

Chemistry Research Laboratory, and Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, UK. Department of Chemistry and Applied Life Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, CH



Motivation

Docking has largely neglected M-L interactions.

Available tools1 have limited scope. are closed-source, or require manual setup.

Goal: Improve pose prediction for metalloproteins.

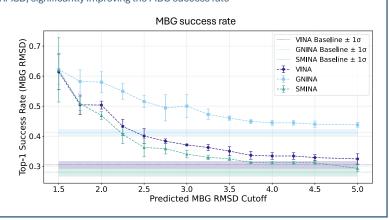
The largest dataset of metalloprotein-ligand structures to date: 41k training, 1.1k validation, and 155 test complexes.

Data and splitting strategy based on PLINDER².

Baseline Methods Structures preparation Ligand Baseline docking tools preparation AutoDock Vina³ SMINA4 GNINA5 3D Conforme PLINDER PDBQT File Evaluated using the metal-binding Meeko Scrubber group (MBG) success rate (Predictions with RMSD < 2 Å) Receptor preparation PLINDER Supported Unsupported PDBQT File The MBG is defined as all atoms within a certain radius around metal ions. Meeko Reduce2

CHELATE

Coordination Heuristics for Estimating Ligand Association in Those Enzymes


CatBoost model trained on MBG RMSD.

Features:

- Sum of inverse, mean, minimum, maximum and standard deviation of distances between ligand and protein atoms at different distance cut-offs, and their count.
- Docking score.
- One-hot encoded metals.

Code coming soon!

Benchmark Results CHELATE filters poses based on predicted MBG RMSD, significantly improving the MBG success rate Fraction of systems with at least one pose remaining 100 System Coverage (%) 60 40 20 1.5 4.5 5.0 2.0 3.0 Predicted MBG RMSD Cutoff

Conclusions

Curated the largest dataset of ligand-metalloprotein complex structures to date.

Benchmarked baseline models (Vina. SMINA. GNINA). but found poor performance.

Developed CHELATE, a general metalloprotein docking tool.

Improves pose prediction based on MBG success rate.

Outlook

More accurate MBG placement → can be used for bonded models in MD simulations to further improve accuracy

References:

- 1. a) Wang et al., Brief. Bioinform. 2023, 24, 1-11. b) Jiang et al., Chem. Sci. 2023, 14, 2054-2069. c) Clemente et al., J. Chem. Inf. Model. 2024, 64, 1581-1592.
- 2. Durairaj, Adeshina, et al., bioRxiv 2024.07.17.603955.
- 3. Trott, et al., J. Comput. Chem. 2010, 31, 455-461.
- 4. Koes, et al., J. Chem. Inf. Model. 2013, 53, 1893-1904. 5. McNutt, et al., J. Cheminform. 2021, 13, 43.

WT thanks the Ineos Oxford Institute for Antimicrobial Research, the Department of Chemistry and St John's College for their support.

Email: woitek.trevde@sic.ox.ac.uk